
210 American Archivist / Vol. 50 / Spring 1987

dBASE III Plus and the MARC
AMC Format: Problems and
Possibilities
RONALD J. ZBORAY

Abstract: As archives with smaller holdings adapt to the MARC AMC data format,
they will need to explore the utility of various commercially-available, microprocessor-
based, data base management systems. This article presents four approaches to using
the AMC format in dBASE HI Plus, the best selling of these systems. The discussion of
the limitations and possibilities of the four approaches demonstrates that while there is
no inherent incompatibility between dBASE and the MARC format, the most efficient
use of a dBASE-MARC system requires considerable programming.

About the author: Since 1984 Ronald J. Zboray has been the Microfilm Editor of the Emma
Goldman Papers at the Institute for the Study of Social Change, University of California at
Berkeley. He received his B.A. in history from the University of Bridgeport and the A.M. and
Ph.D. in American Civilization from New York University. He has taught American history at the
University of Connecticut at Stamford, Pace University, the University of Hartford, and Post
College (Waterbury, Conn.). His articles have appeared in The International Journal of Micro-
graphics and Video Technology, Film and History, American Quarterly, and Southwest Review.
For the latter he won the 1986 DeGolyer prize for best nonfiction essay in American Studies.

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-07-02 via free access

dBASE III Plus 211

WITH THE INCREASING ACCEPTANCE of the

MARC AMC data format by the com-
munity of archivists, archives with smal-
ler collections which are able to afford
only microcomputers will seek to use the
new format for automated control of
their holdings. Vendors, such as Cactus
Software, have already recognized this
small emerging market with records man-
agement packages that have the MARC
AMC format already built in. Research-
ers at Michigan State University, with
funding from the National Historical
Publications and Records Commission,
have developed yet another such pack-
age. Yet, by and large, archivists have
been unhappy with the overall inflexibil-
ity and occasional unreliability of these
specialized offerings. Some have limited
or no networking capability, and none
contain a flexible internal programming
language as extensive as those in best-
selling data base management systems.
This dissatisfaction is not surprising; few
small software publishers can afford the
costs and labor time necessary to develop
state-of-the-art data base management
systems. Certainly the limited market of
archivists who control their collections
with microcomputers does not warrant
larger publishers undertaking this devel-
opment.1

For the foreseeable future, archives
with small holdings will probably rely
upon mass market, commercial data base

management systems for document con-
trol. Many archivists, before they knew
much about MARC AMC, used such sys-
tems as Revelation, RrBase 5000, and,
principally, the industry leader dBASE.
Because of the large, highly competitive
market these products address, they are
generally speedy and dependable, and of-
fer the flexibility of a wide variety of cus-
tomized reporting options and data ma-
nipulations and searches—particularly
necessary to the frequently unique char-
acteristics of archival collections.2

These limited local applications of data
base management systems scarcely re-
quired the descriptive depth and stan-
dardization demanded by MARC AMC.
Few archivists on their own would create
a data base file with MARC AMC's
seventy-seven variable data fields with
each having from one to twenty sub-
fields. Through foresight or sheer luck, a
handful of archivists can output data
they collected in earlier systems in a form
compatible with MARC AMC; far too
many others cannot. To ensure compati-
bility and, above all, to use the new data
format most effectively, archivists using
microcomputer-based data base manage-
ment systems should plan for AMC at the
input stage when files are created.3

Some considerations for archivists
planning to use AMC within a commer-
cial data base management system will be
presented below. Though the focus is on

'MARC (Peoria, Ariz.: Cactus Software, Inc.); MicroMARC:amc (East Lansing, Mich.: Michigan State
University Archives and Historical Collections). See also Micro Archives and Research Collections On-Line
(MARCON) (Baltimore: Automated and Information Retrieval Systems); Mark H. Kibbey, "Marcon II: In-
formation Control on a Microcomputer," Library Hi-Tech News 14 (Summer 1986): 11-21.

"Revelation (Seattle: Cosmos, Inc.); R:Base Series 5000 (Bellevue, Wash.: Microrim, Inc.); dBase III Plus
(Torrance, Cal.: Ashton-Tate). A good starting point for archivists thinking about implementing data base
management systems is Jeanne C. Raudenbusch and Robert B. Shaklee, "Selecting Records Management
Software," Records Management Quarterly 19 (July 1985): 22-31.

'The MARC AMC format appears in Library of Congress, MARC Formats for Bibliographical Data, up-
dates nos. 10 and 11 (Washington, D.C.: Library of Congress, 1984, 1985). A more usable guide is Nancy
Sahli, MARC for Archives and Manuscripts: The AMC Format (Chicago: Society of American Archivists,
1985). Helpful for implementing MARC is Max J. Evans and Lisa B. Weber, MARC for Archives and Manu-
scripts: A Compendium of Practice (Madison: State Historical Society of Wisconsin, 1985). The literature on
MARC AMC grows annually; solid introductions to key issues surrounding MARC AMC are presented in
three articles in the Winter 1986 edition of the American Archivist (vol. 49: 9-40): Nancy A. Sahli, "Interpre-
tation and Application of the AMC Format"; Katherine D. Morton, "The MARC Formats: An Overview";
and Steven L. Hensen, "The Use of Standards in the Application of the AMC Format."

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-07-02 via free access

212 American Archivist / Spring 1987

dBASE III Plus, most of the viewpoints
can be applied to other systems, since
most of them have similar features and,
for archivists, similar limitations. dBASE
was chosen because it is the best-selling
commercial data base management sys-
tem for microcomputers. In the discus-
sion below, examples will be drawn from
the experiences of the Emma Goldman
Papers Project at the University of Cali-
fornia at Berkeley as it faces the challenge
of making dBASE compatible with
MARC AMC.4 After a brief overview of
dBASE's capabilities, four different ap-
proaches to using dBASE for AMC will
be explored. Each approach requires an
increasing level of programming sophisti-
cation yet yields a more efficient use of
hard disk storage space.

The programming required to use
dBASE for AMC most efficiently may
well be used as an argument against using
dBASE at all for this purpose. As the dis-
cussion below will demonstrate, dBASE
can be adapted to the needs of the AMC
format only with difficulty or within se-
vere limitations of disk space usage.

Nevertheless, the installed base of
dBASE users among archives will inevita-
bly continue to grow, and many archi-
vists may have little alternative to dBASE
for collection control. Though dBASE
has a steep learning curve, the program
encourages experienced users to dabble in

the internal programming language
where the true flexibility of the system
emerges; the expertise for more sophisti-
cated adaptations of dBASE to the AMC
format may thus eventually be found
among the staff of an archive. Archivists
may also use dBASE for a host of differ-
ent applications, from keeping addresses
of correspondents to keeping track of
volunteers or donors. Staff members
must master only one system for these
different purposes. Because dBASE, de-
spite its limitations, will continue to be
used by archivists, the suitability of the
four approaches will be discussed below.

Capacity and Capabilities
At first glance dBASE III Plus seems

to be adequate to the needs of even mod-
erately large archives. Up to a billion re-
cords and a total of 2 billion bytes can be
controlled. A maximum of 128 fields
promises to fit easily MARC AMC's re-
quirement for 77 fields. Although the
maximum record size of 4,000 bytes may
barely contain the information required
by the MARC format, dBASE permits
variable-length memo fields that can run
to 512 kilobytes.5

In practice, for use on microcomput-
ers, dBASE's specifications make it
suited only in archives with small to
moderate-sized holdings. dBASE de-
mands that a single, entire data base file

4The Emma Goldman Papers, in existence since 1980 under the directorship of Dr. Candace Falk, is an
NEH- and NHPRC-sponsored project collecting Goldman's published and unpublished works and correspon-
dence and government documents pertaining to her. Supported by a guide and in-depth, three-volume index, a
microform edition of these materials will be published by Chadwyck-Healey, Inc.; completion is expected in
1991.

'dBase III Plus differs from dBase II and III in several ways. The Plus version, released in 1986, offers
multi-user operation, the ability to control vastly more files, optional menu-driven operation and dozens of
other new features. A clumsy copy protection in the first release has recently been removed. Most library and
archival literature has not yet had time to catch up with the new upgrade. Since there are strong similarities
between the various versions, some of the older literature may still be relevant. See Roger D. Palmer, dBase II
& dBase III: An Introduction for Information Services (Studio City, Cal.: Pacific Information, 1984); and the
various regular columns in Library Software Review beginning with Randolph Gadikian, "dBase II in Librar-
ies" 3 (1984): 521-26. Although more and more general sources have appeared for dBase III Plus, one of the
best is Luis Castro, Jay Hanson, and Tom Rettig, Advanced Programmer's Guide Featuring dBASE II,
dBASE III, and dBASE III Plus (Culver City, Cal.: Ashton-Tate, 1985). For good introductions to dBASE III
Plus, see Robert A. Byers, Everyman's Data Base Primer Featuring dBASE III Plus (Torrance, Cal.: Ashton-
Tate, 1986) and Howard Dickler, dBASE II Plus Trail Guide (Torrance, Cal.: Ashton-Tate, 1986).

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-07-02 via free access

dBASE III Plus 213

be kept on one disk or diskette. Since
Microsoft DOS has difficulty addressing
a file greater than 32 megabytes on a sin-
gle storage media, the total record capaci-
ty of dBASE falls far, far short of the
theoretical 1 billion limit. That each vari-
able memo field uses a minimum of 512
bytes when data is entered even more se-
verely restricts the total number of re-
cords that can be controlled.6

The most obvious limitation of dBASE
(and nearly all other data base manage-
ment systems except Revelation) is the
fixed-length field. Because the variable-
length memo fields cannot be searched or
manipulated by dBASE in any way, the
fixed-length fields remain the heart of the
system. Fixed length fields waste im-
mense amounts of disk space (about one-
half to two-thirds of capacity), further
limiting the maximum number of records
that can be stored on microcomputer
with a fixed disk. The business applica-
tions for which dBASE is designed will
often set a reasonable length on, for ex-
ample, a personal name field, and trun-
cate names that go beyond that length.
Standard archival practice allows for no
such shortening; the longest field entry in
a file will determine the length of the
field, even if that entry is singularly long.
Thus for archives, the potential for wast-
ing disk space with the fixed-length field
far exceeds that of other applications.

The MARC AMC format itself en-
courages a waste of disk storage space.
Relatively few data control records will
use all seventy-seven fields and perhaps
only some will use more than a majority.
Certainly if an archive settles the first or
even second level of AACR2 description,
even fewer fields will be used.7 But such
avoidance of the descriptive depth of-
fered by level three in conjunction with
MARC AMC may be shortsighted, since

points of access considered excessive to-
day too often become expected in the fu-
ture.

In the discussion below the fullest im-
plementation of MARC AMC will be
considered. Control will be assumed to be
at the document level and the full AMC
format will be used even though most ar-
chives would never have need to imple-
ment the format to such an extent.

Approach I: Using dBASE Directly Off
the Shelf

The ability of very novice users of
dBASE to construct and manipulate data
files with relative ease accounts for much
of dBASE's success. Employing either
the "CREATE «filename»" command at
the dot prompt or the menu-driven, pull-
down "Assistant," the user who wants to
design a data base needs to do little more
than name fields, determine whether the
type of data in each field should be char-
acter, numerical, logical, date, or memo
(text file), and decide how many charac-
ters each fixed-length field will contain.

Table 1 shows the structure of a viable,
easily-constructed dBASE file that con-
forms to the requirements of MARC
AMC. The estimated fixed-field lengths
range from 12 characters for Tag 007
(category of materials) to 250 characters
for Tags 600 and 650 (subject added per-
sonal names and topics, respectively).
Since all the fields, except one, use
character-type data this information has
not been displayed. Because dBASE per-
mits only field names of ten characters or
less, these names have been mnemonic-
ally derived in the table (e.g.,
"LCNUMBER" in Tag 010 stands for
Library of Congress control number).

Six variable length fields do not ap-
pear. Tag 002, the subrecord map of the
directory, can be generated by the pro-

'Editing memo fields adds to their length; the old version is saved in the data base text file and even subse-
quent edits are saved. dBASE, however, will release the space used by these older versions if the file is copied.

1 Anglo-American Cataloging Rules, 2d. ed. (Chicago: American Library Association, 1978), 15.

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-07-02 via free access

214 American Archivist / Spring 1987

gram that outputs the information in the
AMC format.8 The field for character
sets specified (Tag 006), not a required
field in AMC, has not been used because
dBASE stores data in ASCII format. The
remaining four fields representing Tags
870 to 873 have not been included be-
cause these have fallen into widespread
disuse since the Library of Congress's
adoption of AACR2 in 1981.

Table 1 shows only forty-eight fields
rather than the seventy-seven prescribed
by MARC AMC. The difference arises
out of combining Tags 500 through
59X—the notes section of the AMC for-
mat—into one variable-length field.
These basically textual note fields use
enormous amounts of space; without
combining them, the total number of
bytes used by the fixed length exceeds the
4,000 byte per record limit of dBASE by
nearly 75 percent. The combined notes
field sacrifices little flexibility since the
corresponding AMC fields seldom re-
quire computer manipulation aside from
free text searching. Although dBASE III
Plus does not provide free text searching
of memo fields, at least one very inexpen-
sive utility program does.9 One, rather
than several, memo fields has been used
to save disk space; as mentioned earlier,
every time data is entered into a memo a
minimum of 512 bytes are used. Users ac-
cess the memo field by calling up the re-
cord to be edited, placing the dBASE
blinking cursor on the field filled with the
word "memo," and typing control page
down ("Ctrl-PgDn"). A text file (in ei-
ther the Wordstar-based dBASE editing
mode or a word processing program of
the user's choosing) appears on the
screen, and data may be entered in text
form with the Tag number identifying
each field. Exiting the editing mode or

word processor returns the user to the
memo field in the controlling data base
record.

Even when using memo fields for
notes, this off-the-shelf approach wastes
space promiscuously. Most fields will be
used rarely, yet the possibility of their use
requires that they be included. For exam-
ple, the three fields for conference and
meeting information (Tags 111, 611, and
711), which are not always relevant to
manuscripts and archives, together use
310 bytes. Shortening these fields might
make it impossible to enter the full name
of the rare conferences or meetings—
which often have very long names—that
occur in a collection. The space wasted by
such uncommonly-used fields in addition
to that lost due to the fixed-length field
basis of the system may amount to as
much as 95 percent of disk capacity.

The maximum number of records that
can be stored on a hard disk using this
approach can be estimated easily. The
fixed-length fields use up 3,814 bytes per
record and the variable-length notes field
a minimum of 512 bytes. Since the notes
field embraces so many fields archivists
commonly use, 1,024 bytes per record is
probably a more realistic estimate than
the minimum 512. Thus, total number of
bytes used by each record equals 4,838
(the use of the memo field permits an ex-
cess of the 4,000-byte dBASE maximum).
That number divided into the thirty meg-
abytes of the largest single storage media
DOS can address suggests an absolute
maximum of 6,200 records on a hard disk
with that capacity. But the performance
of a hard disk slows dramatically as it ap-
proaches full disk capacity. For best per-
formance, a 30 megabyte hard disk
should hold no more than 5,000 records.
For many archives, especially ones con-

"Tags Leader/00 to Leader/23 and Directory/00 to Directory/11 also do not appear because they are best
generated at the program level during data output.

'dBASE HI Memo Searcher (San Diego: Data Based Solutions).

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-07-02 via free access

dBASE III Plus 215

trolling materials only at the collection
level, this maximum number of records
may be ideal.

Such a scheme, however, provides only
for the storing of records; to get the most
out of dBASE, users must build index
files based on the data base. A single in-
dex file (e.g., main entry-personal name)
uses only about 10 or 20 percent of the
size of the related data base, but several
such files must be created. Index files are
especially necessary for making a quick
search for information in the main data
base. Seeking indexed information (the
first character and up to a hundred char-
acters to the left) takes less than two sec-
onds for a data base of any size; search-
ing for character strings within fields of a
moderately-sized unindexed data base
can take several minutes. Fortunately, in-
dexes can reside on a separate drive or
partition, so one need only add on an ex-
tra 20 or 30 megabyte hard disk to make
use of this important feature.

Using dBASE directly off the shelf has
advantages and disadvantages, the bal-
ance of which changes depending upon
the nature of the archive and the re-
sources available. Within only an hour or
so, users can create a workable MARC
AMC-based system and begin to enter
data, with little or no support from pro-
grammers or consultants. With program-
mers charging about $50 an hour, such
user independence may be well worth the
tens of millions of wasted bytes of
storage the off-the-shelf approach re-
quires. Storage media increasingly be-
comes less expensive so that one can anti-
cipate paying for every ten megabytes of
storage capacity about $250 or less—a
one-time, certain cost that may compare
favorably with the unpredictable and
chronic costs of customized program-
ming. The chief disadvantage of the off-
the-shelf approach is the limited number
of records that can be controlled. Even if

the user tinkers with field lengths to make
the data records most suited to the collec-
tion and thus cuts down the number of
bytes used by each record, such gains
would be minimal. There would still be a
limit of about 5,000 records, with no
room for further growth, unless the user
turns to one of the other approaches ex-
plained below.

Approach II: Simple Dependency
The 5,000 record limit of the off-the-

shelf approach can be most easily over-
come by splitting the single data base out-
lined in Table 1 into two dependent data
bases. The two data bases must be linked
through a common field, indexed in at
least one. The common field may be the
record number or any unique finding
number in any of the MARC format
fields. Whatever the source of the link-
age, the numbers or characters must ap-
pear in only one record in the data base
or the linkage will break down.

Creating dependent data bases requires
delving deeply into the dBASE III Plus
manual. Although the menu-driven "As-
sistant" promises to guide the user
through the steps to link data bases, there
is difficulty writing programs when the
data bases are on two different disks.

The first step in creating simple data
base dependency consists of constructing
the two data bases on two different hard
disks. In the data base structure pres-
ented in Table 1, a natural division occurs
between field number 27 (notes) and field
28 (subject-added personal names).
Fields 1 to 27 total an estimated length of
2,478 bytes leaving 2,360 bytes for the re-
maining fields. If the record number will
not provide the linkage between the two
data bases, the slightly smaller second
data base will need an extra field to dupli-
cate the linking expression in the first.
For example, if field 6, "SYSNUMBER"
(the local system control number used by

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-07-02 via free access

216 American Archivist / Spring 1987

many archives to store the accession
number) is the link, the same field must
appear in the second data base.

With the two data bases constructed on
different disks the second step of creating
dependency requires creating a format
file. The format file will link fields from
the two data bases on the CRT screen so
that the existence of two data bases will
become undetectable during data entry.
The dBASE text editor can be used to
create the format file (while dBASE runs)
with the "MODIFY COMMAND
«filename.fmt»" command, or a word
processing program may be used as long
it will not enter any invisible page format-
ting characters in the text.

Next the user must tell the program
where on the screen to put each field
name and the fixed number of spaces for
each field. dBASE addresses the screen
using "@" with row and column coordi-
nates (e.g., "@ 12,40" represents "at
row 12, column 40"). The field names are
typed on the screen by using the "SAY"
command and the blanks are painted by
the "GET" command. When two data
bases are being used simultaneously, the
"GET" command demands that a point-
er ("-> ") be used to identify the source
of the field being read. If the first data
base is named MARCAMC1 and the sec-
ond MARCAMC2, then any number
written in the blanks painted by the com-
mand "@ 7,12 GET MARCAMC1 ->
SYSNUMBER" will be entered only in
the first data base.

Figure 1 shows the text of a program
that will create a screen form for entering
into two data bases the fields presented in
Table 1. Although the two data bases
may be called MARCAMC1 and
MARCAMC2, dBASE permits using a
shorter name or "alias" for program-
ming purposes. In Table 2 "ONE" repre-
sents the alias for the first data base and
"TWO" for the second, thus "ONE ->
SYSNUMBER" is used instead of
"MARCAMC1 ->SYSNUMBER." Fi-

nally, the "SAY" and "GET" command
lines are interrupted every so often by a
"READ" command that creates page
breaks in the data entry form; the user
will be able to access the entire form at
any time during entry using the "PgUp"
and "PgDn" keys.

The final step in creating a simple de-
pendent data base relationship is to write
a short program to create the dependency
whenever the program is loaded. Again
the dBASE text editor can be used to
open the program file (do not use any
three-character file extension, i.e.,
filename.exO. Commands are entered
line by line in dBASE's easy-to-use pro-
gramming language. For example, as-
sume that there are: 1) two hard disks (C
and D); 2) two data base files named
MARCAMC1 and MARCAMC2 on C
and D respectively; and 3) a format file
called MARCAMC.FMT. In this in-
stance, the short program would read:

SELECT 1
USE C:MARCAMC1 ALIAS ONE
SELECT 2
USE D:MARCAMC2 ALIAS TWO
SELECT 1
SET RELATION TO RECNO() INTO TWO
SET FORMAT TO MARCAMC
RETURN.

The program selects two work areas to be
open simultaneously: area 1 with
MARCAMC 1 (under the alias name
"ONE") on disk C and area 2 that has
MARCAMC2 ("TWO") on D. The
"SET RELATION TO . . . " command
creates the data base dependency so that
when a record pointer moves in one, it
moves in the other as well. The example
uses the record number ("RECNO()")
as the point of interaction between the
two data bases. Finally, the "SET FOR-
MAT TO . . . " command will call up the
format file when either the standard
"EDIT" or "APPEND" commands are

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-07-02 via free access

dBASE III Plus 217

entered at the dot prompt (the prompt re-
appears after the program issues the
"RETURN" command). This program
must be run every time the user loads
dBASE; to load it at the dot prompt, the
user types "DO «program filename»."

Although creating this simple depen-
dency may seem daunting because of the
amount of programming involved, most
of the programming (i.e., the format file)
is redundant and quite simple, even for
novices. Much of this programming can
be avoided if the user is willing to put up
with a more obvious split between the
two data bases during data entry. If so,
the user would use the same short loading
program given above without the "SET
FORMAT TO . . . " command. The re-
cord in the first data base would be edited
and written to the disk and the dot
prompt will appear. The user then would
change the currently selected work area
by typing "SELECT 2 ." By entering
"EDIT," the continuation of the record
on the second data base appears. At the
dot prompt after completion, "SELECT
1" must be entered again before begin-
ning to edit another record.

Simple data base dependency, however
achieved, has one distinct advantage over
the off-the-shelf approach. Since depen-
dency allows the forty-eight fields pre-
sented in Table 1 to be distributed be-
tween two hard disks, the maximum
number of records that can be controlled
doubles (if the two disks have the same
capacity). Thus using the byte-wasting
data base structure presented above, a
user who creates a simple dependency be-
tween two data bases on two 30 megabyte
disks or disk partitions will be able to
control about 10,000 records (with the
various required indexes stored on yet
another hard disk).

The simple data base dependency ap-
proach to creating MARC AMC records

in dBASE probably is best suited to ar-
chives with smaller holdings which intend
to control materials at the collection lev-
el. The archive should expect no dramatic
growth since the 10,000 record limit is as
fixed as the 5,000 limit of the off-the-
shelf approach. Apart from hard disk
space, the dependency approach is rela-
tively inexpensive. The limited program-
ming involved can be accomplished by
anyone with a working knowledge of
dBASE. Even if outside programmers
must be hired to set up the dependency,
the simplicity of the programming would
keep costs down and limit them to the pe-
riod in which the system is set up.

Approach III: Multiple Dependency
The two approaches outlined above

waste large amounts of disk space in or-
der to set up, with minimal program-
ming, small document control systems.
More sophisticated programming offers
the ability to cut down the number of
bytes used by each record as well as to in-
crease dramatically the number of re-
cords a system can control. Advanced
dBASE programming becomes highly
creative at this level, and a myriad of ap-
proaches can be pursued to achieve
greater efficiency. Since the details of any
of these approaches are so highly techni-
cal as to confuse most non-programmers,
the nature of the discussion below turns
from "How-to" to "What-can-be-
done."

Advanced dBASE programming can
significantly reduce the number of bytes
used by records in the MARC AMC for-
mat by creating multiple dependent data
bases. Rather than splitting a pre-
formatted entry form such as the one pre-
sented in Table 1 (done with simple de-
pendency), multiple dependency uses
many dependent data bases to replace
short codes in a main data base record.10

'"See "Database Design," chap. 9 in Castro, Hanson, and Rettig, Advanced Programmer's Guide.

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-07-02 via free access

218 American Archivist / Spring 1987

Generally, any field with standardized,
recurring information can be rendered
more efficiently using codes. MARC
AMC has several such fields, ten of
which occur in Tags 600 to 69X, the sub-
ject indexing fields of MARC. These
fields use 1,510 of the 4,838 bytes in the
sample record structure presented in
Table 1. The fields contain, for the most
part, standardized subject entries that ap-
pear repeatedly in many archives. The en-
tries can be replaced, as has been the case
at the Goldman Papers, by four-letter
mnemonically derived codes with a space
separating each code for clarity. For ex-
ample, the Goldman Papers encodes
"Theater" as "thea" and "Berkman,
Alexander" as "beal" (i.e., the first two
letters of the last and first names). Re-
placing the text-oriented subject fields
with codes allows all ten subject fields to
be combined into one. A subject field of
150 bytes can contain a maximum of 15
codes—probably more entries that could
be contained in the 1,510 byte text-
oriented field without codes."

Figure 2 illustrates the manner in which
the codes in the main data base record in-
teract with the same codes in a dependent
data base of subjects. Each record in the
subject data base should contain at least
four fields: the four-letter code, the entry
itself, a two-letter code for type of entry
(i.e., " P N " equals "Personal name"),
and a logical field that queries if subfields
have been used. The use of subfields re-
quires ten data bases for each type of en-
try; the subfield and subject data bases
also interact through the four-letter code.

One key advantage of using codes for
subjects is that the dependent data base
acts as an authority file. During final
MARC AMC output, a single entry in the
data base will replace all the correspond-
ing codes throughout the entire main data

base. Such a find-and-replace operation
ensures uniform spelling and form for
subject entries. Entering a four-letter
mnemonic code allows smaller room for
error than correctly retyping the same full
entries over and over. Still, errors may
slip by and codes may be duplicated. Be-
cause of these possibilities for human er-
ror, the Goldman Papers employs a
menu-driven subject assigning program
that searches the dependent data base for
code duplications and allows any new en-
tries to be appended immediately to the
dependent data base.

The amount of disk space such a sys-
tem saves depends upon the nature of the
archive. For control at the document lev-
el, as in the Goldman Papers and in most
other documentary editing projects where
the materials have a common focus, the
great repetition of subject entries results
in a dependent data base using only 10
percent or less of the bytes that full sub-
ject entries in the main record would re-
quire. Archives having a wide diversity of
materials would employ a greater number
of unique subject entries, thus slightly de-
creasing the amount of disk space saved.

In addition to reducing the space taken
up by subject added entries, dBASE pro-
gramming can also minimize the disk
space used by rarely used fields. The
greatest savings of this sort can be
achieved in Tags 700 to 752, the added
entries, which use up 580 bytes in the
sample record structure in Table 1. The
approach to rarely used fields differs
from that of the ubiquitous subjects. In-
stead of a large field containing codes,
rarely used fields can be best treated by
creating a logical field (true or false) in
the main data base, a field that essentially
asks if added entries exist for the record.
If so, a dependent data base for added
entries can interact with the main data

"The Goldman Papers' computer system is described in Ronald J. Zboray, "Microfilm Editions of Per-
sonal Papers and Microcomputers: Indexing the Emma Goldman Papers," International Journal of
Micrographics and Video Technology, 5 (1986) 213-21.

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-07-02 via free access

dBASE III Plus 219

base using the record number, local sys-
tem control number, or other informa-
tion unique to the main record. The add-
ed entry dependent data base could have
more than one record, each with the in-
teracting code, from each main data base
record; each dependent data base record
should have a field to identify the type of
entry (e.g., personal name or uniform ti-
tle heading).

A similar approach can be followed for
fields that tend toward redundancy, such
as Tags 100 to 130 for main entries and
Tags 240 to 245 containing various forms
of titles. These fields have a total of 720
bytes in the sample form in Table 1. A
single field each for main entry and title
eliminates much of the redundancy. Ad-
ding a two byte field for the correspond-
ing field in MARC AMC (e.g., personal
or corporate name, uniform title or title
statement) addresses any confusion about
the nature of the field. Another single
byte logical field can ask if other main en-
try or title fields have been used. If so, a
dependent data base can be constructed
to store the extra entries, much as was the
case with the rarely used fields.

Paring down the number of fields in
this manner not only makes data entry
easier, but also dramatically reduces the
number of bytes each record requires.
Table 2 shows a record structure of 32
fields containing only 1,035 bytes in fixed
length fields. With the addition of the es-
timated 1,024 bytes used in the variable
length notes field, the total number of
bytes amounts to 2,059—only 42 percent
of the 4,838 in the off-the-shelf approach
previously described. The reduced num-
ber of bytes doubles the maximum num-
ber of records on a 30 megabyte hard
disk from 5,000 to approximately 10,000.
Combined with simple dependency (i.e.,
splitting the main data base record be-
tween two disks), the multiple dependent
approach can accommodate on two 30
megabyte hard disks 20,000 records—a

number adequate to the needs of many
archives with moderate-sized holdings
which control data at the collection level.
The disk space required to store the mul-
tiple dependent data bases can be stored
on a third hard disk. As suggested above,
the number of bytes the dependent data
bases require depends on how many
unique entries are used in coded fields
and how many times rarely used fields are
employed. Even the limit of 20,000 re-
cords can be far surpassed if the data
base is further split up (i.e., the notes
field has its own data base) and distrib-
uted between the partitions of a 100
megabyte or greater capacity disk or bet-
ween several hard disks on a local area
network.

Against the advantages of increased re-
cord capacity must be placed the signifi-
cant amount of programming necessary
to set up and maintain the multiple data
bases. Archives with a staff member
adept at moderate-level dBASE program-
ming might find the multiple dependency
approach suitable to their needs. Hiring
outside programmers may not be worth
the expense for an archive aiming to con-
trol less than 10,000 records, for whom
simple dependency might be more suited.
Nevertheless, the authority file-type con-
trol offered by using multiple data
bases—and the consequent savings in in-
put effort and the decrease in the number
of errors—may be attractive to even ar-
chives with less extensive holdings.

Approach IV: Menu-Driven Programs
A menu-driven approach to using the

MARC AMC format in dBASE III Plus
offers a wide number of advantages over
the other approaches at the cost of a great
deal of program development. A menu-
driven program usually can be used by
staff members and even volunteers with
little or no computing experience. Such a
program can include error and format
checking routines and "help" options

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-07-02 via free access

220 American Archivist / Spring 1987

(e.g., the text of relevant portions of the
MARC AMC manual or AACR2) in or-
der to guide the user with relatively little
effort through the maze of rules and pro-
cedures. It takes a die-hard computer afi-
cionado to feel comfortable entering
"$z" as subfield delimiters in the middle
of otherwise text-based materials; a
menu-driven program itself generates this
type of input without the assistance of the
user.

As another advantage, the menu-
driven approach uses disk space much
more efficiently than the other methods
described above. Not only can this ap-
proach employ to the fullest extent multi-
ple dependency, it also can address to a
limited degree the problem of fixed
fields. One way to accomplish this is to
create a record with all the field names
listed in Table 1 and to characterize the
fields as logical (i.e., a one-byte true or
false entry). The logical fields will indi-
cate whether information exists in a de-
pendent data base for that field. Then
separate dependent data bases for all the
fields, including the notes, may be cre-
ated that will interact with the main re-
cord by its record number or some other
number unique to it. The length of the
fields in the dependent data bases is op-
tional, because the program can combine
several records to reconstruct a single en-
try; the smaller the length the more the
system approaches the disk space usage
of a variable-length field based system. A
sixty-eight character field width may be
adequate for most applications; this
length is easy to use since it represents
one line of characters across the screen
(minus the twelve bytes used for a field
name). At the time of data entry the pro-
gram either can paint the screen with a
form with very large spaces for informa-

tion or it can, in an unformatted mode,
prompt the user for information for stor-
age to a memory variable, the contents of
which the program will eventually split
up into standard field lengths and distrib-
ute through the relevant dependent data
base. While the amount of disk space
such a system will use depends upon the
particular application and the length of
fields in the dependent data bases, most
archives could realize 60 to 80 percent us-
age of disk capacity, compared to an esti-
mated 5 percent for approaches I and II
discussed above.

By making the main data base a logical
record and with the increase in disk use
efficiency, menu-driven programs far
outpace the other approaches in the max-
imum number of records that can be con-
trolled. Seventy-two logical fields in the
main document control record would use
only seventy-two bytes; conceivably, a
thirty megabyte hard disk could hold
about 350,000 such records. Of course,
the considerable disk space needed for
the dependent data bases must be taken
into account, which could limit (to vari-
ous degrees depending on available hard
disk storage space) the total number of
possible records. Because each field has a
separate data base in such a system, the
distribution of disk space is flexible and
may be changed over time as needs in-
crease. Distributed hard disks on a net-
work or a partitioned disk of over 100
megabytes certainly would guarantee that
the capacity of such a system could sur-
pass 100,000 records. In the best of all
possible worlds, with an array of net-
worked 100-megabyte-or-greater capacity
disks, the 350,000 record limit would ap-
ply.12

Figure 3 illustrates one path through a
menu-driven system developed by the

'2Sharing disks over a network can dramatically slow down the performance of programs. With time and
particularly optical fiber cabling and the adoption of the new 20386 Intel microchip, network performance will
become a smaller hindrance to distributed hard disk resources on local area networks. See William Bates and
Andres G. Fortino, dBASE III Plus & Local Area Networks (Torrance, Cal.: Ashton-Tate, 1986).

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-07-02 via free access

dBASE III Plus 221

Goldman Papers during 1985 and 1986.
The user goes through three menus be-
fore entering information in a main docu-
ment data entry form. Data entry is se-
lected at the first menu and customized
entry at the second. The "Regulariza-
tion" option in the second data entry
menu deals with the problem of removing
editorial interpolations (attributions in
brackets and the use of question marks)
in order for dBASE to index names in
proper order. The selection of " B " for
"Customized data entry" brings up a
menu that allows various forms of au-
thority work and error and format check-
ing. The use of the file name extension
".dbf" among the options in the third
menu indicates a search of a dependent
data base, three of which appear on the
menu: biographies (of correspondents),
bibliography, and institutions. The cus-
tomized data entry menu leads to a main
document entry form, after which sub-
jects are entered, checked in the corre-
sponding data bases, and the field is al-
phabetized. A series of error checking
routines completes the program, and the
user is given the option to edit another re-
cord.

Such menu-driven programs reflect the
most user-friendly and efficient use of
dBASE III Plus for creating MARC
AMC format records. The extensive, ad-
vanced programming involved in devel-
oping such a system, however, makes it
viable only for projects with an advanced
dBASE programmer on their staff or for
larger institutions with the need to con-
trol a great many records and the funds
to support the on-going development of
the program. Perhaps some enterprising,
commercial developer will someday cre-

ate a standardized menu-driven program
in the MARC AMC format that can run
from within a dBASE III Plus environ-
ment. Until then, this approach to creat-
ing MARC AMC records in dBASE will
be available to only a few archives.

Conclusion
The discussion above has attempted to

show that although dBASE can be used
to create data bases in the MARC AMC
format, such use operates within certain
restrictions. dBASE can be used directly
off the shelf by archives for this purpose,
but at the expense of wasting large
amounts of disk storage space. Splitting
up the main data base records and dis-
tributing them between two hard disks
can double the number of records that
can be controlled but does little to help
the disk wastage problem. A system of
multiple dependent data bases begins to
address the problem, but it requires a
commitment to moderate-level program-
ming that may not be affordable by many
archives. A full menu-driven approach,
while it provides the most efficient use of
disk space, also requires extensive, ad-
vanced programming.

The four approaches, however, should
not be considered mutually exclusive. El-
ements from any of the four can be
blended to make a system most suited to
the needs of a particular archive. So,
ironically, the MARC AMC format,
which many archivists fear may lead to
overstandardization, may in its actual im-
plementation on small data base manage-
ment systems lead archivists to construct,
based on knowledge of their holdings, a
myriad of computer applications as
unique as their own collections.

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-07-02 via free access

222 American Archivist / Spring 1987

OE '

° 0.1 « « I C

v 0

? ? % c

„ E I o -
S a c

J •- » -H o m i

a u o J o..
a n r. D n

I 3 I D I 0 1 C I C I

Q o o o c

z z u t- x z
a o o 3 t- t3
I-J o o o D a

S z I a
• • o a <- < a

a. £ a E * •

• * g .^ a

; i- i oi« r. SK w
•> • • ^ • - ^ L. I

O M f <D I
O O O I

E B £ C I. U C " ") CJ - 4.

O ^ - ^ O O O -

D < <
J Q <J

o o

SS

E >

S
V
S
N

B
I
B
L

04
0

UJ

•a

o

s

nn

o o oo

ssss

„ g
O (J Q H

A
R
E
A

C
H
R
O

G
E
O
C

S
U
B
C

«.-; o

JM
B

L
N

-
O
C
A

ggs

P
E
R
S

C
O
R
P

C
O
N
F

1
3
0

S

Q

I

T
I
T
L

SS SSS |

_l 1— h- I

U
N
I
T

T
R
A
N

C
O
L
U

T
I
T
L

P
U
B
L

minx

- if)

E z

M
E
D
I

N
O
T
E

i

n

ss

E

SL —

c v

> o o -

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-07-02 via free access

dBASE III Plus 223

-
01

->

m

D.

Cr

u
l
a
t
e
d

~i

<a

Ql
3

3 «

— C

10

1

-

o

1

_,

-t
u

•o

1

"1 0)

n ro

-» <B
3 3

r

•
1

C Q

1

3 a
O tn

... -1
3 01

-* 0

•1
D D
T IB

tt

1 01
tt

n cr

01

r
i
i

CU

3"

p
a

5 C

a*
o

0

01

n

o
C

-*

u>

IB

t
h
r
e
e
: 1

)
t
h
e

-h

rx>

n

in

j

n

i
IB

B

>

n

r i

n

d
 ;

a
n
d

CO

—

n

tt

Is

(i

1/
1

J

*• 3"

c

l

oi

(D

r»

oi

0
<D

1

(D
J

n
01

m

01
01

in

-n

ITj

a

*

T

11 c
o
n

3
01

01

A,

n

Ja

-

01

IT

t
a
i
n

<n

T

J .

a

w
•
m

•

t l

n

•n

CJ
01
w
(E

^

—

w

n

n
n

a

l/i

-*,

r

u

n

ID

i

,+

a

3

j

d

(i
- i

H

"1
^

in
n

m

-

i
o

-*

in

-*•

T

a
r
e
 o
n

cr

(TP

n
[i

n

1
[t

— o <o a

c a •"" •-

m - H

o r

o
~~"

P
u
b
l
 i

e
t
c
.

-
a
d
d
i
t
i
o

a
t
i
o
n
,

d
i

{i m
p
r
i n

t
)
s
t
r
i

c

o

ro

X

X
r

CD
CD

•n

a <o
3

n

°3

3

TJ
m

U l

a

T
i
t
l
e

M
A
R
C

*MC
t
y
p
e
 o

m

—

O

-<

JU
j *

I

O

m
e
e
t
i

M
a
i
n

01

VI

o ^

- I
") (/I

I-I H

Z S

D Ji

ai m ~J

e
r
n
a
t
e

p
r
e
s
e
n

01 <O

_,. p

Ul -J

t
i t

e
m

a
t i on

e
n
t

c
o
r
p
o
-
a
t
e

n
a
m
e
.

c
o
n

tt

IP
j

n

en ui & u ro

m > o C O 73

m z z H m

3J S O
< ro o

Ul - . (J

n

CJ

o

m J> >

o o c

m

CO

O (D Ĵ Ol
O X ro ro

u
o

G
e
o
g
r

S
u
b
j
e

L
o
c
a
l

M
a
i
n

M
a
i
n

>+ 3 * n

•o o --

Jl (II 01

j
) O

J O

a ~j tn

WOO)
o z m
n H n

3 Ul
1 - . O

•J ^1 01 (Jl

U l

C
h
r
o
n

I

1

i
I

1

C
a
t
a
l

L
a
n
g
u

G
e
o
a
r

u a oi

a

Jl Ul Ul
U I O O I O COCDCDCD

c
e
s
s

M X

use
el

n
o
t

j
e
c
t

a

ed
 e
n
t

tn a.

9
* 3 t

k
i
n
g
e

1 i
c
a
t
i

i ons

-JOI

a <
t/i

^"

L
e
v
e
l

LT

D

n

J l LJ1

y
a
n
d

3 rt- O *

«< tu oi

o n e
r+ O 1

»< 1

D

*+ 1

i

(i

n

o

r j

T l

M

o

L
o
c
a
l

o

r

•

i n
0)

UT

n
z

B
b

o

L
i
b
r
a

n

n

T

n

o o
CS Cl)

o o o o
0D CD CS CD

U U U M N
to at

M
o
d
i
f

C
a
t
a
l

ed
s
o
u
r
c
e

a
g
i
n
g

s
o
u
r

n Q

o

U l

tu

3

X

I
in

j) OJ

0 01

0

n

o

tt

(Jl £. (x

U) CJ

Q T

c
t
i
o

n

a
a

Ul UI

r -

~t -•• --
->• O 01

- * Ot

0) C

w n
O IP

- * • O
03 -*
r f

a o
0

ro

c
o
d
e

U
n
d
e
f

n
e
d

Ul

o
a IO

3 - • -

CO

w

3

O O
o o
CD CD

— o
en ~J

_. _,
^J C

D
a
t
e

P
l
a
c
e

p
r
o
d

of
p
u
b
l
1
c

J
C
t
i
o
n
, o

r

ID O

c -

a
3

Ul Ul
W CJ

r
o
d
u
c
t

at i
o
n

u
p
l
i
c
a

o

j . O
in ^
D

O C
o o
CJ3 CD

o o

o

D
a
t
e

T
y
p
e

•
n
t
e
r
e
d

o
r

jf
d
a
t
e
 c
o

<n

°

DJ O

Q J

01

o

t>

D
A
T

r

o

o o 3 O C
O O O O O

ro

B
a
s
e

[
F
i
x
e
)f

f
i
l
m (rr

J
-
l
e
n
g
t
h d

0

— o
m T
3 3

r*

o o o
a o o

— — O O O O
- O (Dlfl i i O)

C
o
l
o
r

E
m
u
 Is

(mi c
r
o
f
o
r

on

o
n
 M
l

cji ui m
ro i\> to

cr T -

j . _». i
- 3 i

m
a
r
y
,
 i

o
p
e
, e

3 01

3
O

*

a

P
o
l
a
r

D
 1 m

e
n

R
e
d
u
c

la"!

Q 3

—

r
CJ

o
• o

O
r
i
g
i

r
e
p

o
n
c

i

«•

IU

T

u

H

S

ro

o o
o o

r
—

S
p
e
c
i

-

a.
a

n
-1

T

01
:T

•n

O

C
a
t
e
g
.act

 i
o
n

jry
o
f

m
a
t e
r
i
a

Ul t i

T C,
O X

ro -

J* C

- (X

? r

en u

o c
o c
U l -

C
o
n
t
r

D
a
t
e
 t

l
n
u
m
b
e
r

m
d

t
i
m
e
 o

01

ID
CD
r*

to fo

m >
1/1 S

7

CJ1 —

ro c

— \r>

*z m
c/

X
T

_ .

uiuiuimuiuiwwu
— o o
o en m

T O n r+

ro *

*~. 3 ^

— O "1

<-<

s
e
r
t
a
t

o

J*

o
•

10

e
r
a
l
n

— o
z]

0)

°

s
i
c
a
l c

i urn
e
s
c

c

i
n

n

•

73
n

*MC
F
I
E
L
D

m

I

CD

H

s

C
A
M
C

f

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-07-02 via free access

224 American Archivist / Spring 1987

FIGURE 1: A DBASE III PLUS PROGRAM TO CREATE MARC AMC FORMAT
DATA ENTRY FORMS USING SIMPLE DATABASE DEPENDENCY

@ 0, 0 SAY "CONTR"
@ 0, 12 GET ONE->CONTR
@ 1, 0 SAY "DATETIME"
§ 1, 12 GET ONE->DATETIME
@ 2, 0 SAY "CATEGMAT"
@ 2, 12 GET ONE->CATEGMAT
§ 3, 0 SAY "DATAELEM"
@ 3, 12 GET ONE->DATAELEM
@ 4, 0 SAY "LCNUMBER"
@ 4, 12 GET ONE->LCNUMBER
@ 5, 0 SAY "SYSNUMBER"
@ 5, 12 GET ONE->SYSNUMBER
@ 6, 0 SAY "BIBLEVEL"
@ 6, 12 GET ONE->BIBLEVEL
@ 7, 0 SAY "CATSOURCE"
@ 7, 12 GET ONE->CATSOURCE
@ 8, 0 SAY "LANGCODE"
@ 8, 12 GET ONE->LANGCODE
@ 9, 0 SAY "AREACODE"
@ 9, 12 GET ONE->AREACODE
@ 10, 0 SAY "CHRONCODE"
@ 10, 12 GET ONE->CHRONCODE
@ 11, 0 SAY "GEOCODE"
§ 11, 12 GET ONE->GEOCODE
§ 12, 0 SAY "SUBCATCODE"
@ 12, 12 GET ONE->SUBCATCODE
@ 13, 0 SAY "LOCALLNUMB"
§ 13, 12 GET ONE->LOCALLNUMB
@ 14, 0 SAY "PERSNAME"
@ 14, 12 GET ONE->PERSNAME
@ 16, 0 SAY "CORPNAME"
@ 16, 12 GET ONE->CORPNAME
§18, 0 SAY "CONFNAME"
§ 18, 12 GET ONE->CONFNAME
@ 20, 0 SAY "TITLEHEAD"
@ 20, 12 GET ONE->TITLEHEAD
§2 2 , 0 SAY "UNITITLE"
@ 22, 12 GET ONE->UNITITLE
@ 24, 0 SAY "TRANSTITLE"
§ 24, 12 GET ONE->TRANSTITLE
READ
§ 1, 0 SAY "COLUNITITL"
@ 1, 12 GET ONE->COLUNITITL
@ 3, 0 SAY "TITLESTATE"
§ 3, 12 GET ONE->TITLESTATE
@ 5, 0 SAY "PUBLDESCR"
§ 5, 12 GET ONE->PUBLDESCR
§ 7, 0 SAY "PHYSDESCRP"
@ 7, 12 GET ONE->PHYSDESCRP
§ 9, 0 SAY "MEDIUM"

[CONTINUED IN NEXT COLUMN]

[CONTINUED
COLUMN]

§ 9, 12 GET
§ 10, 0 SAY
@ 10, 12 GET
§13, 0 SAY
§ 13, 12 GET
§14, 0 SAY
§ 14, 12 GET
@ 18, 0 SAY
@ 18, 12 GET
§ 21, 0 SAY
§ 21, 12 GET
@ 24, 0 SAY
§ 24, 12 GET
READ
§ 2, 0 SAY
§ 2, 12 GET
§ 6, 0 SAY
@ 6, 12 GET
@ 9, 0 SAY
@ 9, 12 GET
@ 10, 0 SAY
§ 10, 12 GET
@ 13, 0 SAY
§ 13, 12 GET
§14, 0 SAY
§ 14, 12 GET
@ 16, 0 SAY
@ 16, 12 GET
@ 18, 0 SAY
§ 18, 12 GET
§ 20, 0 SAY
@ 20, 12 GET
§22, 0 SAY
@ 22, 12 GET
§24, 0 SAY
§ 24, 12 GET
READ
§ 1, 0 SAY
§ 1, 12 GET
§3, 0 SAY
§ 3, 12 GET
§ 4, 0 SAY
§ 4, 12 GET
§6, 0 SAY
§ 6, 12 GET
@ 8, 0 SAY
§ 8, 12 GET
§9, 0 SAY
§ 9, 12 GET

FROM PREVIOUS

ONE->MEDIUM
"ORGANIZTN"
ONE->ORGANIZTN
"NOTES"
TWO->NOTES
"SUBADDPN"
TWO->SUBADDPN
"SUBADDCN"
TWO->SUBADDCN
"SUBADDCF"
TWO->SUBADDCF
"SUBADDUT"
TWO->SUBADDUT

"SUBADDTH"
TWO->SUBADDTH
"SUBADDGN"
TWO->SUBADDGN
"GENRE"
TWO->GENRE
"OCCUPTN"
TWO->OCCUPTN
"FUNCTION"
TWO->FUNCTION
"LOCSUB"
TWO->LOCSUB
"ADDPN"
TWO->ADDPN
"ADDCP"
TWO->ADDCP
"ADDCF"
TWO->ADDCF
"ADDUT"
TWO->ADDUT
"ADDTTD"
TWO->ADDTTD

"ADDPUB"
TWO->ADDPUB
"PHYSACCS"
TWO->PHYSACCS
"HOSTITEM"
TWO->HOSTITEM
"LOCATION"
TWO->LOCATION
"ALTGRAPH"
TWO->ALTGRAPH
"FORGNMARC"
TWO->FORGNMARC

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-07-02 via free access

dBASE III Plus 225

FIGURE 2: 6 MODEL OP MULTIPLE DATABASE DEPENDENCY OF MARC AMC SUBJECT FIELDS

I Subject fie'dj

I base record I

Ifoijr-letter code!
-I * two-letter I-
Itype code L

Personal Name

Corporate Name

Uniform Title Heading

Topical Heading

Geographic Name

Genre

Occupat ion

Function

FIGURE 3i SAMPLE SESSION FROM THE EMMA GOLDMAN PAPERS MENU-DRIVEN PROGRAM

MENU OF OPERATIONS

ONE OF THE FOLLOWING OPTIONS

A. DATA ENTRY. B. DATA UPDATE.

C. REPORTS. D. INDEXING

I E. INQUIRIES. F. EXIT
1

(2) DAT* ENTRV MENU

-> 1 I (3)

WHICH OPTION 00 WISH TO PURSUE (

X. E

A-0.X)7

XIT

1 B

TO MiIN MENU.

C

c

c

E

| E

I t
I E

HECK AUTHOR FOR

RRO

RRO

"c

R4O

°

) CHECK

5 CHECK

5 CHECK

B CHECK

(4)

(S)

(6)

(7 }

MAT(Y/N)?: V

PROCES50R CODEO

DOCU

FOR

FIEL

MENT SERIES

(V/N)"> • V

STATE OR CO

D FOR IMAGE

1
i

I

MAIN DOCUMENT E

1

I
I

I
1

.CORD [V/N).

/N)?: V

CODECY/N)7; Y

NTRV CODE(V/N)?;

QUALITY!Y/N)?: V

VTRV FORM]

C C

J ° U 1 ESJ

/N)T, V

»

1
1

1

1
,

!

1

[RETURN TO MAIN MENU]

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-07-02 via free access

